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Abstract

The formulations of the complete solutions to the rectangular simply supported plates with power-law, sigmoid, and
exponential FGMs have been derived in Part 1. In this part, we focus on the numerical solutions evaluated directly from
theoretical formulations and calculated by finite element method using MARC program. The effects of loading condi-
tions, the change of Poisson’s ratio, and the aspect ratio on the mechanical behavior of an FGM plate are discussed.
Besides, a comparison of the results of P-FGM, S-FGM, and E-FGM is investigated.
© 2005 Elsevier Ltd. All rights reserved.
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1. Finite element models

In the numerical calculation, consider a square FGM plate with the ratio of width to thickness equal to
50, i.e., a=b =100 cm, 2 =2 cm. The plate is simply supported on its four sides and is subjected to the
transverse load, as shown in Fig. 1. The Poisson’s ratio of the FGM plate is assumed to be constant in
the whole plate. Take v =0.3. The Young’s moduli at the top and bottom surfaces of the FGM plate
are assumed to be E, and Ej, respectively. However, the Young’s modulus at any point on the FGM plate
varies continuously in the thickness direction based on the volume fraction of the constituents.
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/y a=100cm
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Fig. 1. The configuration of a simply supported rectangular FGM plate.

Due to the symmetry about the x- and y-axes, only one quarter of the full plate is under consideration
when using the finite element program MARC. In the finite element mesh, 16 layers in the thickness direc-
tion are used to simulate the variation of the material properties of the FGM plate. Each layer has constant
material properties, but the material properties differ from layer to layer. The material properties of all lay-
ers in the mesh are determined from the functions of volume fractions in Part I, according to the given Ej,
E, and v. Moreover, because there is no any stress singularities in the plate, solid eight-node elements are
used.

2. The S-FGM plates

The material properties of S-FGM plates vary continuously and functionally based on the volume frac-
tion of the sigmoid distribution, given in Eq. (4) of Part I of this paper. It is assumed that the Young’s mod-
ulus at the bottom surface of the S-FGM plate, Ej, is 2.1 x 10° Kg/cm?, while that at the top surface of the
S-FGM plate, E,, varies with the ratio of E|/E,. The variations of Young’s modulus of the S-FGM plate
versus the ratio of E|/E, are plotted in Fig. 2 for the case of the material exponent p = 2.

The series solution to the S-FGM plate with material property of E = E(z) only is given in Eq. (46) of
Part 1. Now, consider the special case that the material exponent p = 2. Then the quantities of S;; and Oy,
in Eq. (48) of Part I for the case of p =2 can be simplified as
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Fig. 2. The variation of the Young’s moduli of an S-FGM plate for different ratio of E|/E-.
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2.1. Under uniform load

First, consider that the S-FGM plate is subjected to a uniform load with the magnitude g, = 1 Kg/cm?.
Expanding the uniform load into a Fourier series, we obtain

nmy
qz(x y =40 = Z Z Dnn Sln_ SlnT (33)
The coefficient ¢,,, can be evaluated by Eq. (19) of Part I and is
164,
= =1,3,5,... 3b
mn 2mn )1 ISRl ( )

Consequently, the deflection, strain, and stress of the S-FGM plate under uniform load ¢, for p =2 are
evaluated by Egs. (46) in Part I as
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where the quantities of Sy; and Q;; are given in Egs. (1) and (2) of Part II.
For a square plate (¢« = b), the expressions of the deflection w, strain &,, and stress g, in Egs. (4) involve

the terms of s 1+n T . o mn’:'mj:r" % respectlvely, which are independent of the material properties.

Therefore, the convergence of Z > o m2+n — Z Z n<m IR and Z Z % can be checked by

comparing the series solutions correspondlng to certain m and n terms of an isotropic homogeneous square
plate with the finite element solution. It is found that for m and n greater than 12, the deflection, strain, and
stresses of the series solutions will converge to constant values with errors less than 0.5%.

Hence, by applying E, =2.1x10°Kg/em®?, a=b=100cm, h=2cm, v=0.3, ¢o=1Kg/em?
m =n =20 into Egs. (4), the theoretical results can be evaluated without any difficulty. In addition, the
plate problem is also investigated by finite element method. The theoretical and FEM results for the deflec-
tion w, strain &,,, and stress o, are plotted in Figs. 3-5, respectively.

Fig. 3 shows that (i) the more E,/E-, the larger deflection w, because of the less stiffness of the FGM plate
for larger E,/E>; (ii) the deflection of the FGM plate for E;/E, = 30 is about five times of the homogeneous
plate (E,/E, = 1); (iii) the theoretical and numerical results agree very well with the maximum error less
than 5%.
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Fig. 3. The deflection of an S-FGM plate along the x direction for different E/E.
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Fig. 4. The strain ¢, at the center of an S-FGM plate for different E,/E>.

Fig. 4 represents the strain ¢, at the center of the square plate (x = a/2, y = a/2) along the thickness
direction. The strain ¢, of the FGM plate calculated by FEM is linear, which supports the assumption that
the strain is proportional to z. It is observed that the strain exists at the mid-surface (z = 0) of the FGM
plate and it increases upon increasing E,/E,. It is well known that the neutral surface of a homogeneous
plate is located at the mid-surface. However, for the FGM plate, Fig. 4 shows that the neutral surface
moves to the positive z direction as the value of E,/E, increases. The locations of the neutral surface of
the S-FGM plate for different E;/E, obtained from Fig. 4 are listed in Table 1. The maximum strain at
the center of the FGM plate is compression and at the upper edge (z = —h/2).

The variation of the stress o, at the center of the FGM plate along the thickness direction is depicted in
Fig. 5. The stress of an S-FGM plate can be represented as a function of z of order 3, which is quite obvious
for the case with E;/E, = 30. This phenomenon coincides with the theoretical formulation in Eq. (4c), in
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Fig. 5. The stress g, at the center of an S-FGM plate for different E,/E,.

Table 1

The locations of the neutral surface of an S-FGM plate for different E,/E,

E|/E, 1 1.5 2 4 10 30
Location of the neutral surface (z/h) 0 0.04167 0.06945 0.125 0.17045 0.19489

which the stresses are proportional to z - E(z). In this section, the material parameter p is assumed to be 2,
therefore the Young’s modulus E(z) is a function of z of order 2 and consequently the stress is a function of
z of order 3.

The maximum tensile stress in the center of the S-FGM plate is at the bottom edge (z = //2) and in-
creases as the ratio E,/E, increases. However, the maximum compressive stress is at the top surface
(z = —h/2) for small E|/E,. As the ratio of E,/E, increases, the maximum compressive stress moves to in-
side of the plate. The maximum compressive stress of the S-FGM can be obtained by differentiating the
formation of stress in Eq. (4c) with respect to z. For the ratio £;/E, = 1 in which the FGM plate becomes
a homogeneous plate, the stress distribution is a linear function of z and the maximum stress is at the top or
bottom surface of the plate.

2.1.1. The effect of the aspect ratio alb

So far, the problem shown in Fig. 1 is assumed to be a square plate. However, it is worthwhile to inves-
tigate the effect of the aspect ratio a/b on the mechanical behavior of FGM plates. Therefore, in this section,
all discussion are based on the assumption that a is fixed to be 100 cm and b is varying to investigate the
effects of the aspect ratio a/b. The maximum deflection of the FGM plate shown in Fig. 1 is located at the
center of the plate (x = a/2, y = b/2), and it is found from Eq. (4a) in the form of

) _ leget* 1 ——
War = w(a/2,b/2) = —3 S“%: " mn[(@)”r"z}2 .

The relation between the maximum deflection wy,,, and the aspect ratio a/b for different E,/E, ratios is
illustrated in Fig. 6. The maximum deflection w,,,, increases upon increasing the aspect ratio for a/b less
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Fig. 6. The maximum deflection of an S-FGM plate versus the aspect ratio a/b for different E|/E, (a = 100 cm, b is varying).

than 3. However, when a/b is greater than 3, the maximum deflection wy,,, of the rectangular FGM plate
becomes a constant values. The strain and stress at the center of the plate are

oo 82y >l T

16q0b E Q11 + Z mh + W’l

For the case with E;/E, = 10, the effects of the aspect ratio a/b on the strains .., ,, and stresses o, gy, at
the center of the FGM plate are demonstrated in Figs. 7-10, respectively. It is observed that the neutral

S-FGM plateunder uniform
1 load for E/E,=10

z/h

Fig. 7. The variation of the strain ¢, at the center of an S-FGM plate for different aspect ratio a/b for a fixed as 100 cm and b varying.
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Fig. 8. The variation of the strain ¢,, at the center of an S-FGM plate for different aspect ratio a/b for a fixed as 100 cm and b varying.
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Fig. 9. The distribution of the stress o, at the center of an S-FGM plate for different aspect ratio a/b for a fixed as 100 cm and b
varying.

surfaces of the S-FGM plates for E;/E, = 10 are at the same location, z = 0.17h, for a different aspect ratio
alb. Moreover, at the center of the FGM plate, the maximum strain located at the top surface of the plate
(z = —h/2) increases with the increase of the aspect ratio a/b for a/b < 1, but decreases with the increase of
the aspect ratio for a/b > 1.

At the center of the FGM plate, the maximum stress is tensile and is located at the bottom surface of the
plate. To further understand the effect of the aspect ratio on the strain and stress, the maximum strains
(&xx)max> (Epy)max and stresses (0xv)max> (Oy))max at the center of the plate versus the aspect ratio with different
ratios of E|/E, are plotted in Figs. 11-14, respectively. The maximum strain (&,,)max at the center of the
plate vanishes when a/b > 5. However, the maximum strain (&,,)max, and the maximum stresses (0 yy)max
and (0,,)max at the center of the plate remain constant when a/b > 5.



3682 S.-H. Chi, Y.-L. Chung | International Journal of Solids and Structures 43 (2006) 3675-3691

4000

SFGM plateunder uniform| &b
7 load for E/ E,=10

3000

2000 —

1000 —

W ROIO~N®

Dimensionless Stress: 6,,/d,

-0.4 0 0.4 0.8
z/h

Fig. 10. The distribution of the stress o,, at the center of an S-FGM plate for different aspect ratio a/b for a fixed as 100 cm and b
varying.
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Fig. 11. The maximum strain (¢,,)max at the center of an S-FGM plate versus the aspect ratio a/b for different E|/E, (a = 100 cm, b is
varying).

It is worthwhile to investigate whether the medium-thick plate assumption will hold for the FGM plates
with different b/h ratio under certain aspect ratio a/b, especially for the case of large a/b values. To do this,
consider an S-FGM rectangular plate with E,/E, = 10 and Poisson’s ratio v = 0.3 subjected to uniform
load. The length of the plate a is fixed and taken as 100 cm. The width of the plate b is varying such that
the aspect ratio a/b =1, 2, 4, 8, 9, 10. For each aspect ratio a/b, change the thickness % so that the b/ value
is in the range 5-25. The a/b values corresponding to different a/b and b/h ratios are listed in Table 2, in
which the bold entries indicate that the thickness satisfies the medium-thick plate assumption, i.e.,
alh = 20-100 approximately.

The maximum deflections wp,,x and the maximum tensile stresses (6., )max at the center of the plates for
different a/b and b/h ratios are estimated by both the theoretical formulae and finite element analysis.
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Fig. 12. The maximum strain (&,,)max at the center of an S-FGM plate versus the aspect ratio a/b for different E,/E> (a = 100 cm, b is
varying).
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Fig. 13. The maximum tensile stress (0,,)max at the center of an S-FGM plate versus the aspect ratio a/b for different E,/E,
(a =100 cm, b is varying).

Consequently the errors of the theoretical results compared with the finite element analysis are obtained.
The errors of the maximum deflections wp,,x and maximum tensile stresses (0., )max versus the b/h values
for different aspect ratio a/b are shown in Figs. 15 and 16.

It is found from Figs. 15 and 16 that the errors of maximum deflections decrease as a/b value increases,
so do the errors of the maximum tensile stresses when a/b increases to 4, whereas the errors increase slightly
for a/b =8, 9, 10. The reason might be because for certain b/h value, the smaller a/b has the thicker thick-
ness & for which if the thickness does not fit the medium-thick plate assumption, the ignored transverse
shear strain causes bigger errors. For the case a/b = 4, the thicknesses for b/h = 5-25 all satisfy the med-
ium-thick plate assumption, i.e.,a/h = 20-100, and hence the error of the maximum tensile Stress (0 y)max
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Fig. 14. The maximum tensile stress (,,)max at the center of an S-FGM plate versus the aspect ratio a/b for different E,/E,
(a =100 cm, b is varying).

Table 2
The values of the ratio of a/h for different a/b and b/h ratios (a is fixed and taken as 100 cm)

alb=1 alb=2 alb=4 alb=18 alb=9 alb=10
blh=5 5 10 20 40 45 50
b/h=6.25 6.25 12.5 25 50 56.25 62.5
b/h=28.33 8.33 16.7 334 66.8 74.97 83.3
b/h=12.5 12.5 25 50 100 112.5 125
b/h=16.7 16.7 334 66.8 133.6 150.3 167
b/h =20 20 40 80 160 180 200
Fb/h =25 25 50 100 200 225 250

The bold entries indicate that the value of a/h is in the range of medium-thick plate assumption (a/h = 20-100).

for a/b =4 is the minimum in all different aspect ratios. However, the maximum deflection w,,,, behaves
slightly different from the maximum tensile stress (0 y )max: the errors of the maximum deflections for
a/b =4 is not the minimum in all a/b values. When the aspect ratio a/b becomes larger, e.g., a/b =38, 9,
10, the thickness satisfy the medium-thick plate assumption only for small values of b/l (see Table 2).
Hence, the error of the maximum tensile Stress (o . )max is small for small b// but slightly increases for large
b/h. However, the error of maximum deflection wy,,, shown in Fig. 15 presents the opposite behavior: the
bigger b/h the small error even though the thickness is too thin to fit the medium-thick plate assumption.

Based on the above discussion, because the maximum deflections and maximum tensile stresses exhibit
slightly different error behaviors, it seems that the b/h value which changes according to different aspect
ratio a/b for certain thickness /s does not significant affect the validness of the analytical solution based
on the medium-thick plate assumption. Indeed, it can be simply concluded that if the FGM plate is too
thick for which a/b and b/h are small, the transverse shear strain can not be ignored, and therefore the error
of the analytical solution is big. If the thickness of the FGM plate fits the medium-thick plate assumption,
even though the b/h value is not in the range of 20-100, the analytical results are valid within accept error.
For the case of thin plates, for which a/b and b/h are big, although the FGM plates may be too thin to fit
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Fig. 15. The errors of the maximum deflection w,, at the center of an S-FGM plate versus the ratio b/h for different aspect ratio a/b in
which a is taken as 100 cm and b is varying.
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Fig. 16. The errors of the maximum tensile stress (0. )max at the center of an S-FGM plate versus the ratio b/A for different aspect ratio
a/b in which a is taken as 100 cm and b is varying.

the medium-thick plate assumption (a/h = 20-100 approximately), the theoretical solution based on the
medium-thick plate assumption is also applicable with the errors less than 5%.

2.1.2. The effect of changing Poisson’s ratio
The derivation of the theoretical result of the FGM plate in Part I is based on the assumption that the
effects of changing Poisson’s ratio can be neglected. Therefore, the Poisson’s ratio v is assumed to be
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constant in the theoretical solutions concerning the FGM plate. In this section, the effect of Poisson’s ratio
will be investigated by finite element analysis.

First, the S-FGM plate with ¢ = » = 100 cm is considered, which is subjected to a uniform load, with the
material properties of E1/E, =10 and a constant Poisson’s ratio. To investigate the influence of Poisson’s
ratio, v=0.2, 0.3 and 0.4 are considered. The deflection, strain, and stress of the S-FGM plate are illus-
trated in Figs. 17-19, in which the results of v =0.2 and 0.4 are slightly different from that of v =0.3.

Next, the same S-FGM plate is considered. However, the Poisson’s ratio of the S-FGM plate is not a
constant, but changes continuously with sigmoid distribution:

viz) =g @i+ (1 —g(@)v for0<z<h/2 (8a)
v(iz) =g+ (1 —go(2))v,  for —h/2<z<0 (8b)

where v; and v, are the Poisson’s ratios at the lower and upper surfaces of the S-FGM plate. Here take
vy = 0.3, v, =0.499. The volume fractions g(z) and g,(z) are defined in Eq. (3) of Part I.

For the case that E\/E, =10, v, =0.3, v, =0.499, a = b =100 cm h =2 cm, and p = 2, the deflection,
strain, and stress of the S-FGM plates with functionally graded Poisson’s ratios are plotted in Figs. 17—
19. These figures show that the results of S-FGM plates with a constant Poisson’s ratio (v = 0.3) and func-
tionally graded Poisson’s ratios are almost the same. This phenomenon implies that the influence of
Poisson’s ratio on the FGM plates can be neglected.

2.2. The comparison of the results under uniform, line, and point loads

To investigate the influence of an external load on the S-FGM plates, a square S-FGM plate under a line
load with the magnitude Py, = 100 Kg/cm at x = a/2 is considered such that the total load acting on the
plate is equal to that of the uniform load with the magnitude g, = 1 Kg/cm?. Then the coefficient g,,,, at
the Fourier expansion of the line load Py can be found from Eq. (31) of Part I as

_8p mn

Qom sinT mon=1,3,5... 9)

ann

0
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Fig. 17. The effects of Poisson’s ratio on the deflection of an S-FGM plate for E|/E, = 10.
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Fig. 18. The effects of Poisson’s ratio on the strain ¢, of an S-FGM plate for E|/E, = 10.
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Fig. 19. The effects of Poisson’s ratio on the stress g, of an S-FGM plate for E,/E, = 10.

In a manner similar to the line load, the S-FGM plate is assumed under a point load at the center of the
plate with the magnitude P = 10,000 Kg, in which the total load is equal to that of the uniform load of
go = 1 Kg/cm?. The coefficient g,,, at the Fourier expansion of the point load is found to be

4P . mm . nm (10)

qmn:£8in7 Sin? m7n:173757-..

The deflection, strain, and stress of the S-FGM plate under line load Py and point load P can be eval-
uated by Eq. (46) of Part I without difficulty. The comparisons of the S-FGM plates under uniform, line,
and point loads for E,/E, = 10 are depicted in Figs. 20-22. It is shown in Fig. 21 that the three curves cor-
responding to uniform, line, and point loads intersect at the point of z = 0.174, where is the location of the
neutral surface of the S-FGM plate. Consequently, the location of the neutral surface is dependent on the
material properties, but independent on the loading type.
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Fig. 20. The deflections of an S-FGM plate under uniform load, line load, or point load.
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Fig. 21. The strains ¢,, at the center of an S-FGM plate under uniform load, line load, or point load.

3. The comparison of S-, P- and E-FGM plates

In this section, the problem in Fig. 1 is also under consideration. However, the Young’s moduli of the
FGM plates obeying the power-law or exponential functions (P-FGM or E-FGM plates), will be investi-
gated and further compared with the results of S-FGM plates. The variations of the Young’s moduli in
the thickness direction for the P-FGM plate of p =2 and p = 0.5 as well as the E-FGM plate for different
E,/E, are shown in Figs. 2 and 4 of Part I. The notations of Py s-FGM and P,-FGM in Figs. 23-25 indicate
the P-FGM plate for p = 0.5 and p = 2, respectively. It is observed from Figs. 2 and 4 of Part I that the
stiffness of the Pys-FGM plate is stronger than that of S-FGM plate which is stronger than that of
E-FGM plate. The P,-FGM plate has the lowest stiffness.
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Fig. 22. The stresses o, at the center of an S-FGM plate under uniform load, line load, or point load.
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Fig. 23. The comparison of the deflections of Py s-FGM, S-FGM, E-FGM, and P,-FGM plates for E|/E, = 10.

Figs. 23-25 depict the deflections, strains and stresses at the center of Pys-FGM, S-FGM, E-FGM,
and P,-FGM plates subjected to uniform loads for E;/E, =10. It seems that the theoretical results of
the S-FGM, E-FGM, and P,-FGM agree very well with the finite element results. However, for the
Py s-FGM plate, the theoretical and finite element results are slightly different. This is because the
Young’s modulus of the Py s-FGM varies rapidly near the upper surface of the plate and hence it is dif-
ficult to describe the material properties by finite element meshes. Moreover, the Py s-FGM plate which is
stiffer than the other FGM plates has the smallest deflection, strain and stress among the four kinds of
plates.
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Fig. 24. The comparison of the strains ¢, at the center of Pys-FGM, S-FGM, E-FGM, and P,-FGM plates for E,/E, = 10.
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Fig. 25. The comparison of the stresses o, at the center of Pys-FGM, S-FGM, E-FGM, and P,-FGM plates for E,/E, = 10.

4. Conclusion

In this study, the authors derive the theoretical solutions of FGM plates under transverse loads by Fou-
rier series expansion. The theoretical results are also checked by finite element analysis. The results lead to

the following conclusions:

(1) The closed-form solutions of the deflection, strain, stress, moment of an FGM plate with the material
properties of E = E(z) only have been derived based on the medium-thick plate assumption, and are
functions of Q;; and S;; which can be easily obtained by integrating the material properties along the
thickness. These formulations are also applicable to the homogeneous plates by letting the Young’s
modulus be a constant.
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(2) Under the assumption of medium-thick plate in which the thickness 4 is in the range - —i5 of its span
approximately, the theoretical results, by Fourier series expansion, of the rectangular simply-sup-
ported FGM plates subjected to transverse loads agree very well with those of finite element analysis.

(3) The effect of changing Poisson’s ratio on the mechanical behavior of the FGM plates is very small.
Therefore the Poisson’s ratios of FGM plates can be assumed to be constant.

(4) The neutral surface of the FGM plates depends on the variation of material properties in the thick-
ness direction, or the ratio of E,/E, for certain material distribution. While the location of the neutral
surface is independent of the aspect ratio, or the external loads.

(5) The stresses of the FGM plates along the thickness direction are not linearly proportional to z, how-
ever, it is a function z - E(z). For the numerical study, the Young’s moduli of the FGM plates are func-
tions of z of order 2, therefore the stress represents a function of z of order 3.

(6) The maximum tensile stress of the FGM plates is located at the bottom surface of the plate. This phe-
nomenon is the same as that of a homogeneous plate. However, the maximum compressive stress
moves to the inner side of the plate, rather than at the top surface of the FGM plate.
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